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Abstract. Weakly hyperbolic involutions are introduced and a proof is given
of the following local-global principle: a central simple algebra with involution
of any kind is weakly hyperbolic if and only if its signature is zero for all
orderings of the ground field. Also, the order of a weakly hyperbolic algebra
with involution is a power of two, this being a direct consequence of a result
of Scharlau. As a corollary an analogue of Pfister’s local-global principle is
obtained for the Witt group of hermitian forms over an algebra with involution.

1. Introduction

Pfister’s well-known local-global principle states that a nonsingular quadratic
form q over a field k (which we assume to be of characteristic different from 2)
is a torsion element in the Witt ring W (k) of k if and only if the signature of
q is zero for all orderings of k. Furthermore, every torsion element of W (k) has
2-power order.

If W (A, σ) is the Witt group of hermitian forms over some central simple k-
algebra with involution of any kind (A, σ), then Scharlau showed that the torsion
elements of W (A, σ) have 2-power order.

In this paper, we complement Scharlau’s result by showing that h ∈W (A, σ) is
a torsion element if and only if h has signature zero for all orderings of the ground
field, thus obtaining an analogue of Pfister’s local-global principle for hermitian
forms. In fact, this will follow from our main theorem which states that if (A, σ)
is a central simple k-algebra with involution of any kind, then the signature of
σ is zero for all orderings of k if and only if (A, σ) is weakly hyperbolic. As a
consequence of Scharlau’s theorem we also get that the order of (A, σ) is a power
of 2 when (A, σ) is weakly hyperbolic.

Weakly hyperbolic involutions are a natural generalization of torsion forms and
are a special case of weakly isotropic involutions. The latter were studied in [6] as
an ingredient of a different local-global principle for algebras with an involution
of the first kind.
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All involutions on central simple algebras considered in this paper are arbitrary
and all forms (quadratic, hermitian, etc.) are assumed to be nonsingular. Stan-
dard references are [5] and [10] for the theory of quadratic forms, [4] for central
simple algebras with an involution and [8] for real fields.

2. Preliminaries

Let K be a field of characteristic different from two and let A be a central
simple K-algebra, equipped with an involution σ. We say that σ is of the first
kind if σ|K = 1K and of the second kind otherwise. If σ is of the second kind,
let k denote its fixed field. Then K is a quadratic étale extension field of k,
i.e. either K = k(

√
α) for some α ∈ k× or K = k × k. In the latter case, A

is no longer simple. Unless stated otherwise, we will always assume that K is
a field, for reasons which will become apparent later. To cater for both kinds
of involution, we take k as the base field and simply say that (A, σ) is a central
simple k-algebra with involution, it being understood that the center is k or K,
depending on the situation.

By Wedderburn’s theorem, we can write

A ∼= EndD(V ),

where D is a central division algebra over k (with center K) and V is some finite
dimensional right D-vector space. The degree of A is degA :=

√
dimK A and the

(Schur) index of A is indA := degD. We say that A is split if D = K. Any
field extension L ⊃ k such that A⊗k L is split, is called a splitting field of A. In
particular, the separable closure ks of k is a splitting field of A.

Let n = degA. If σ is of the first kind, σ is called orthogonal (resp. symplectic)
if the extended involution σ⊗1ks

on A⊗k ks ∼= Mn(ks) is adjoint to a symmetric
(resp. skew-symmetric) bilinear form. Involutions of the second kind are also
called unitary involutions.

It is well-known that σ is the adjoint involution of some non-singular ε-hermitian
form (ε = ±1) h : V × V → D, with respect to some involution ϑ on D
which is of the same kind as σ. (If σ is of the second kind, then ε = +1 and
ϑ(α) = σ(α)∀α ∈ K.) So σ is of the form σh, where σh is implicitly defined by

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
for x, y ∈ V and f ∈ EndD(V ).

The form h is uniquely determined up to multiplication with a ϑ-invariant factor
in K×. (More generally, we can substitute a central simple algebra E for D and
a finitely generated right E-module M for V , see [4, 4.A].)

2.1. Hyperbolic Involutions. A right ideal I of A is called isotropic if σ(I)I =
0. The algebra with involution (A, σ), or the involution σ itself, is called isotropic

if A contains an isotropic right ideal and anisotropic if σ(x)x = 0 implies x =
0, ∀x ∈ A. We also say that (A, σ) is weakly isotropic if there exist nonzero
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x1, . . . , xn ∈ A such that σ(x1)x1 + · · · + σ(xn)xn = 0 and strongly anisotropic

otherwise.
The notion of a hyperbolic involution was first defined by Bayer-Fluckiger et

al. [2] (see also [4, 6.B]): an algebra with involution (A, σ), or the involution σ
itself, is called hyperbolic if either the center of A is isomorphic to k × k, or σ is
the adjoint involution of some hyperbolic ε-hermitian form. In both cases (A, σ)
is hyperbolic if and only if A contains an idempotent e such that σ(e) = 1 − e.
This is also equivalent with the existence of an isotropic right ideal I of dimension
dimk I = 1

2
dimk A.

Note that hyperbolic involutions remain hyperbolic under arbitrary scalar ex-
tensions and if (A, σ) is hyperbolic and (B, τ) is arbitary, then (A⊗k B, σ⊗ τ) is
hyperbolic.

2.2. Signatures of Involutions. Suppose that k is a real field. We fix some
notation for the rest of this paper. We denote the space of orderings of k by Xk.
If P ∈ Xk, kP will denote the real closure of k with respect to P . Furthermore,
we set AP := A⊗k kP , σP = σ ⊗ 1kP

, etc.
Let P ∈ Xk. The signature of an involution was defined by Lewis and Tignol

[7] for involutions of the first kind and by Quéguiner [9] for involutions of the
second kind as

sigP σ =

{√
sigP Tσ if σ is of the first kind,√
1
2
sigP Tσ if σ is of the second kind.

Here Tσ denotes the trace quadratic form Tσ(x) := TrdA(σ(x)x),∀x ∈ A, which
takes values in k.

If (A, σ) is split with orthogonal involution, (A, σ) ∼= (Endk(V ), σq), q being a
quadratic form over k, then Lewis and Tignol showed that

sigP σq = | sigP q|.
Likewise, if (A, σ) is split with unitary involution, (A, σ) ∼= (EndK(V ), σh), h
being a K/k-hermitian form, then Quéguiner showed that

sigP σh = | sigP h|.
Clearly, the signature of σ will be zero in the split-symplectic case.

2.3. The n-fold Orthogonal Sum. Let f be a quadratic or K/k-hermitian
form, then the notion of n-fold orthogonal sum of f ,

⊥n f = n× f = 〈1, . . . , 1︸ ︷︷ ︸
n

〉 ⊗ f,

can be extended to the realm of algebras with an involution in a straightforward
way:
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Definition 2.1. Let (A, σ) be a central simple k-algebra with involution of any
kind. The n-fold orthogonal sum ¢

n(A, σ) is defined by
n

¢(A, σ) := (Mn(K), ∗)⊗k (A, σ),

with ∗ the conjugate transpose involution, defined by (aij)
∗ = (ι(aij))

t,∀(aij) ∈
Mn(K), where ι is either the nontrivial automorphism of K if σ is of the second
kind or the identity otherwise. It is clearly again a central simple k-algebra of
degree n · degA.
Remark 2.2. When A is split, the involution ∗ ⊗ σ will be the adjoint of n × f ,
for an appropriate form f .

Remark 2.3. If (A, σ) is a central simple k-algebra with involution of the first
kind, the n-fold orthogonal sum ¢

n(A, σ) was defined in a more intrinsic way in
[12], so as to conform with Dejaiffe’s [3] construction of an orthogonal sum of two
Morita equivalent algebras with involution of the first kind.

3. The Local-Global Principle for Algebras with Involution

Definition 3.1. The algebra with involution (A, σ) is called weakly hyperbolic if
there exists an n ∈ N such that ¢n(A, σ) is hyperbolic. The order of (A, σ) is
the least integer n such that ¢n(A, σ) is hyperbolic.

The main theorem of this paper reads:

Theorem 3.2. Let (A, σ) be a central simple k-algebra with involution of any

kind. Then sigP σ = 0,∀P ∈ Xk if and only if (A, σ) is weakly hyperbolic. Fur-

thermore, the order of (A, σ) is a power of two when (A, σ) is weakly hyperbolic.

Note that when k is not real, there is no notion of signature and (Mn(k), t) will
be hyperbolic for some positive integer n, so that (A, σ) will be weakly hyperbolic.
The main theorem will thus hold trivially. Hence, we assume from now on that
k is a real field. In order to prove this theorem, we first need to establish a few
lemmas.

Lemma 3.3. The main theorem holds when A is split; A ∼= Endk(V ).

Proof. When A is split, σ will be the adjoint of a quadratic, a skew-symmetric
bilinear, or a K/k-hermitian form f . If f is quadratic, we have proof by Pfister’s
local-global principle. If f is skew-symmetric, the statement is trivial. If f is
K/k-hermitian, f is completely determined by its trace form qf (x) := f(x, x) ∈
k,∀x ∈ V (Jacobson’s theorem, see [10, Theorem 10.1.1]), in which case we have
proof again by Pfister’s local-global principle.

Lemma 3.4. Let (A, σ) be a central simple k-algebra with involution of any kind

and let L be a real closed extension field of k such that AL
∼= Mn

(
(−1,−1)L

)
for

some positive integer n. Then the main theorem holds for (AL, σL).
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Proof. If σL is symplectic, then σL is the conjugate transpose involution t, where
is quaternion conjugation. In this case, (AL, σL) is totally anisotropic and σL

is positive definite, so the lemma holds.
If σL is orthogonal, then σL is the conjugate transpose involution ˆt, where ˆ

is the orthogonal involution on (−1,−1)L, determined by 1̂ = 1, î = −i, ĵ = j,

k̂ = k. Now sig σL = 0 and ¢2(AL, σL) is hyperbolic, since ¢2
(
(−1,−1)L, ˆ

)
is

hyperbolic (the element e := 1
2

(
1 j−1

j 1

)
satisfies e2 = e and êt = 1− e.)

If σL is unitary, then the center of AL is L(
√
−1), which is algebraically closed,

since L is real. Hence AL
∼= M2n

(
L(
√
−1)

)
and σL is the conjugate transpose

involution ∗, defined earlier. Now (AL, σL) is totally anisotropic and σL is positive
definite, so that we are done.

Lemma 3.5. Suppose σ is an anisotropic involution of any kind on a central

simple k-algebra A and let L = k(
√
δ) be a quadratic field extension of k. If the

involution σL = σ⊗1L on A⊗k L is hyperbolic, then there exists r ∈ A such that

r2 = δ and σ(r) = −r.
This is in fact [2, Lemma 3.2] which holds for involutions of any kind, not just

for those of the first kind (as it is stated in [2]). Another result from [2] which
holds for arbitrary involutions, is their Theorem 3.3:

Theorem 3.6. Let (A, σ) be a central simple k-algebra with involution of any

kind and let L = k(
√
δ) be a quadratic field extension of k. If there exists r ∈ A

such that r2 = δ and σ(r) = −r, then (A ⊗k L, σL) is hyperbolic. The con-

verse holds except in the case where A is split, σ is orthogonal and its associated

quadratic form has odd Witt index.

Proof. If σ is an involution of the first kind, we refer to [2, Theorem 3.3] for a
proof, which can be made to work for involutions of the second kind quite easily,
as we will proceed to do now. (The crucial ingredients, Witt cancellation and
Witt decomposition, also work in this situation.) So, suppose that σ is unitary
and note that the exceptional case does not occur now. Recall that K = k(

√
α)

for some α ∈ k×.
Given r, let t = δ−1r ⊗

√
δ ∈ A ⊗k L. Note that t2 = 1 and σL(t) = −t.

Therefore, the element e = 1
2
(1 + t) satisfies e2 = e and σL(e) = 1 − e, so that

(A⊗k L, σL) is hyperbolic.
Conversely, let V be an irreducible left A-module and D = EndA(V ), so that

A = EndD(V ). Choose an involution of the second kind on D and let h be a
hermitian form on V with respect to which σ is the adjoint involution.

Consider a Witt decomposition

(V, h) ∼= (V1, h1) ⊥ (V0, h0),

where (V1, h1) is hyperbolic and (V0, h0) is anisotropic. Let σi denote the adjoint
involution with respect to hi on EndD(Vi) for i = 0, 1. By Witt cancellation,
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(V0, h0) becomes hyperbolic over L, hence Lemma 3.5 yields an element r0 ∈
EndD(V0) such that r2

0 = δ and σ0(r0) = −r0.
By [2, Theorem 2.2], EndD(V1) contains a σ1-invariant subalgebra M such that

(M,σ1|M) ∼= (M2(K),Θ), where Θ is defined by

Θ

(
a b
c d

)
=

(
d b
c a

)
, ∀a, b, c, d ∈ K.

Let r1 ∈ M ⊂ EndD(V1) denote the image of

(
0 δ

√
α

1√
α

0

)
, then σ1(r1) = −r1

and r2
1 = δ.

Finally, regarding V = V1 ⊕ V0, define r ∈ A = EndD(V ) by

r(x, y) =
(
r1(x), r0(y)

)
.

It is straightforward to check that σ(r) = −r and r2 = δ.

Proof of Theorem 3.2. Suppose first that (B, τ) := ¢
n(A, σ) is hyperbolic for

some n. Since hyperbolic involutions remain hyperbolic under arbitrary scalar
extensions, (BP , τP ) is hyperbolic for every ordering P of k. Since (BP , τP ) is
either split or a matrix algebra over (−1,−1)kP

and since signatures do not change
under scalar extension, we obtain sigP τ = 0, ∀P ∈ Xk from Lemmas 3.3 and 3.4.
This implies sigP σ = 0, ∀P ∈ Xk.

Conversely, suppose for the sake of contradiction that (A, σ) has zero signature
at each ordering of the field k, but that (A, σ) is not weakly hyperbolic. By Zorn’s
Lemma, there exists a maximal algebraic extension field L of k for which (AL, σL)
is not weakly hyperbolic, see Remark 3.8.

Observe that L must be real, because if not, then (Mn(L), t) will be hyperbolic
for some positive integer n, so that ¢n(AL, σL) is hyperbolic. Also, L cannot be
a splitting field for A, because the local-global principle works in the split case
(Lemma 3.3).

Next we will show that L is euclidean by showing that ±1 are the only two
square classes in L. Suppose for the sake of contradiction that there exists α ∈ L
such that ±α is not a square in L. Then L(

√
α) and L(

√
−α) are each quadratic

extension fields of L. By maximality of L we have that (A, σ) must become
weakly hyperbolic on extension to each of these two fields. Thus there exists an
integer n for which the n-fold orthogonal sum of (A, σ) becomes hyperbolic over
both L(

√
α) and L(

√
−α). Let us write (B, τ) := ¢n(AL, σL).

Applying Theorem 3.6 to the two quadratic extensions above, yields two ele-
ments r, s ∈ B such that r2 = α, τ(r) = −r, s2 = −α and τ(s) = −s. Now we
will show that the sum of two copies of (B, τ) is hyperbolic (which is a contra-
diction and hence L must be euclidean). To show this, note that the sum of two

copies of (B, τ) is (M2(B), t⊗ τ) and let e = 1
2

(
1 rs−1

sr−1 1

)
. Then it is easy
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to check that e2 = e and t ⊗ τ(e) = 1 − e. Therefore, the involution t ⊗ τ is
hyperbolic. Thus we have proved that L is euclidean.

In fact, L is real closed, since L cannot have any proper odd degree extensions
by [4, Corollary 6.16]. But then Q := (−1,−1)L is the only division algebra over
L. Hence, AL is an endomorphism algebra over Q (since L is not a splitting field
of A). Since the local-global principle holds for such algebras (Lemma 3.4), we
have a contradiction and conclude that (A, σ) has to be weakly hyperbolic.

The second statement is a direct consequence of Scharlau’s result [11] that
the torsion in the Witt group of central simple algebras with involution is 2-
primary.

Remark 3.7. Whenever there exists an invertible element y ∈ B with τ(y) =
−y−1 one can get that the sum of two copies of (B, τ) is hyperbolic by defining

e = 1
2

(
1 y−1

y 1

)
. When B is split and τ is the adjoint of some quadratic form

φ, the condition τ(y) = −y−1 reduces to the fact that φ is isometric to −φ, which
of course implies that the sum of two copies of φ is hyperbolic.

Remark 3.8. The reasoning behind the use of Zorn’s Lemma is analogous to what
happens in the proof of the “(iv) =⇒ (v)” direction of [10, Theorem 2.7.1]: Let
k be an algebraic closure of k and let M be the set of all intermediate fields M
such that AM := A ⊗k M is not weakly hyperbolic. The set M is ordered by
inclusion. For a totally ordered chain of subfields Mi inM, we let Ai := A⊗kMi

and M :=
⋃
Mi.

Assume for the sake of contradiction that (AM , σM) is weakly hyperbolic. This
means that there exists a square matrix X with entries in AM such that X2 =
X and σM ⊗ ∗(X) = I − X. These are matrix equations with finitely many
coefficients from AM . So all coefficients must lie in Ai for some i. Thus Mi would
not belong to M, a contradiction. Therefore M ∈ M and we have found an
upper bound. By Zorn’s Lemma, M has a maximal element.

4. The Local-Global Principle for Hermitian Forms

Let k be a real closed field and let K be either k(
√
−1) or (−1,−1)k. Let

W (K, ) denote the Witt group of hermitian forms over K with respect to the
canonical involution onK (i.e. the nontrivial automorphism of k(

√
−1) or quater-

nion conjugation). Given h ∈ W (K, ), let qh denote the trace form of h, defined
by qh(x) := h(x, x) for all x ∈ K. In both cases qh takes values in the ground
field k. Let 〈α1, . . . , αn〉 be a diagonalization of h. Then αi ∈ k× (1 ≤ i ≤ n) in
both cases and

qh =

{
2× 〈α1, . . . , αn〉 if K = k(

√
−1),

4× 〈α1, . . . , αn〉 if K = (−1,−1)k.
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As is well-known (see e.g. [10, 10.1.6]), the signature of 〈α1, . . . , αn〉 is an invari-
ant of the hermitian form h in both cases, aptly called the signature of h. To
summarize,

sig h =

{
1
2
sig qh if K = k(

√
−1),

1
4
sig qh if K = (−1,−1)k.

Now let k be a real field and let (A, σ) be a central simple k-algebra (with
involution of any kind). Let W (A, σ) denote the Witt group of hermitian forms
over A with respect to σ. The previous observations allow us to define the
signature of h with respect to the ordering P , sigP h, by going over to the real
closure kP of k with respect to P and using Morita theory. We will not elaborate
this here, but refer instead to [1] for a recent exposition. It turns out that sigP h
can be defined in a meaningful way in the following situations:

• σ unitary;
• σ orthogonal and AP split;
• σ symplectic and AP

∼= matrices over (−1,−1)kP
.

In the other cases, sigP h is defined to be equal to zero. (This includes the
situation where KP = kP × kP , which, together with the fact that algebras with
involution with center k×k are by definition hyperbolic, prompted us to exclude
this possibility from our considerations.)

The main point for us is the observation that

sigP h = 0 ⇐⇒ sigP σh = 0,

where σh is the adjoint involution of h. This can be deduced quite easily from
the work of Lewis–Tignol and Quéguiner mentioned earlier.

Given h ∈ W (A, σ), it is now a simple matter of going over to the adjoint
involution σh on EndA(V ), in order to obtain the following consequence of our
main theorem:

Theorem 4.1. Let h ∈ W (A, σ). Then h is a torsion element if and only if

sigP h = 0 for all P ∈ Xk. Every torsion element of W (A, σ) has 2-power order.

The first statement of the theorem can be translated into a familiar looking
exact sequence:

0 −→ Wt(A, σ) −→ W (A, σ)
(sigP )−→

∏

P∈Xk

W (AP , σP ),

whereWt(A, σ) denotes the torsion subgroup ofW (A, σ) andW (AP , σP ) is either
0, Z or Z/2Z, depending on what happens at the ordering P .

We note again that the second statement of the theorem is nothing new. It
is due to Scharlau [11], a fact which we already acknowledged in the proof of
our main theorem. To be more precise, Scharlau proved that if A is a finite-
dimensional semisimple k-algebra with involution σ such that σ|k = 1k, then
Wt(A, σ) is 2-primary [11, Theorem 5.1(i)]. If we denote the Grothendieck group
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of hermitian forms over (A, σ) by Ŵ (A, σ) in this situation, then the following
exact sequence can be deduced from [11, Theorem 5.2]:

0 −→ Ŵt(A, σ) −→ Ŵ (A, σ)
r∗−→

∏

P∈Xk

Ŵ (AP , σP ),

where r∗ is the canonical extension homomorphism.
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